Orca Technical Reference

Orca Technical Reference

Copyright 2005-2008, Sun Microsystems, Inc.

Table of Contents

Foreword \
1. Prerequisites 1
1.1. GNOME 2.22 OF DELET.....ceutieueeieteeiteieetteteet ettt ettt st e et s et s bt et esbeeatesbesatenaesbeennenbeens 1

1.2. PYthon V2.4 OF DELETccveeutiriiiieniieteieeiteteet ettt ettt ettt st et st e b sbeesae b eas 1

130 BIITTY V3.7.2 OF DELET ..couveieeiieiieiieieeiteeet ettt ettt sttt st sae st ene b eae 1

1.4. Keyboard NaVIZAtIONcc.eeiiriiriiiiieniteieeieeteste ettt ettt sttt e sae st saesieesnenieeas 1

2. Architecture 2
2.1. Desktop and AT-SPL.....cc.ioiiiiiieiieeeeetee ettt st sttt et e st st e e e sabesabeensaenaee s 2
2.2.01CAMOAUIE ..ottt ettt sttt b e st a 4
2.2, 1. SELLINZS weeeuveeneeeiie et et tte st et e bt e st e et e bt e s b ee s s be et e e beesabeeabe e bt e sabeeane e be e s st e sabeeabe e baenaresates 4

2.3, OTCA SCIIPLS +euveetieeiieetteitie et et e et e st e et e bt e s tte et e sabeesbtesatesate e btesatesateebeesstesasesnbeeseesasesnbeenseenseess 5

2.4, SYSIEIIL SEIVICES ..eeuverurierieriierieenttesteeteeteesttestesateesstesstesateesbtesstesaseesbeesstesssesnbeenseesssesaseenseesseess 5
241 SPEECH ..ttt sttt e b e st st e bt e bt e e it st e bee st sates 5

242 BIAILE ...ttt bbbttt sttt be bt se s 6

2430 INAZ ettt ettt et et h e ettt e bt e a b e et e e bt e s at e et e e bt e s bt e eabeeabeenbeeeatesats 6

3. Introduction to Scripting 7
3.1 SCTIPE COMIIACE ..eenvieeiiieiiieitteeite ettt ettt ettt s e et e bt sbt e st e bt e s bt e sate e bt e bt e sbaeeaseebeesbaeenbeeaseenne 7

3.2, SCIPE LIfE CYCIE ...ttt ettt ettt et st e b es et esbeeneesaeene 7

4. Customized Behavior 11
4.1. Defining EVent LASTENETS.cc.eiiiiiieieieiteeierieeeteeet ettt sttt ae et et e b et e e b enes 11

4.2. Input Event HandIETS......ccuoouiiiiiiiiiiiiiiieteeereecte ettt 12

4.3. Defining Keyboard BIindings........cc.coceerieiieienirieiinieeieeese ettt et 13

4.4. Defining Braille Bindingscoceoieieriiniiieneieeicetee ettt st 14

5. Script Utilities 15
5.1. DEDUZ ULIILIES c..eenveitentiiieiieeieeiteie ettt ettt sttt ettt et ettt st st esae bt eba et sbeeneesbeeneen 15

5.2. SPEECH SYNTNESISeuteuiiiieitiiieiee ettt ettt ettt st ettt sbe e sbeeneen 17
I =Y Y=Yl o T o OO TURURPRSTRRRR 17

I Y o Y=Y= el olo (=) o R ot Rule ol o) USROS 17

5.3, BTaille OULPUL...cviieiiieiieiieeieete ettt ettt ettt et sat e e bt e bt e sabesabeesbeesbaesnbeenseenbaesasesnseenses 18

R T B o3 o= B I I R) USROS PRSP 18

5.3, 2. Drai]l 1 EGENET AT OL e PY trreeeeerirrreeeeeiirreeeeeeirreeeeeiirreeeeeesrreeeeeestaseeeeesisssseseessssesessnsseses 18

6. Internationalization (I18N) Support 20
Bibliography 21

iii

List of Figures

2-1. High Level Orca Architecture. The main components of Orca are as follows: desktop applications
that support the AT-SPI, the AT-SPI registry and infrastructure, Orca itself, Orca Scripts, and
system services. The key communication between the components is depicted.c..cccceeeeeennenne. 2

4-1. Orca SCIIPE DIAZIAMccutiitiiiieiiitieteiteet ettt ettt sttt ettt ettt et sbe e st e b e ebteteeb e et e sbeeatenbesbeentesaeenee 11

Foreword

Orca is a flexible, extensible, and powerful assistive technology that provides end-user access to
applications and toolkits that support the AT-SPI (e.g., the GNOME desktop). With early input from and
continued engagement with its end users, Orca has been designed and implemented by the Sun
Microsystems, Inc., Accessibility Program Office.

NOTE: Oreca is currently a work in progress. As a result, this and other books in the Orca Documentation
Series are under continuous modification and are also in various states of completeness.

This book covers the overall architecture of Orca, including a portion on writing custom scripts. The bulk
of the user information and user experience design can be found on the Orca WIKI at
http://live.gnome.org/Orca.

Chapter 1. Prerequisites

To help narrow the scope of the Orca development activity, Orca uses existing software where available.
For example, as mentioned in the requirements, Orca is a screen reader that needs to be able to interact
with speech synthesis, braille, and screen magnification services, but it need not be the provider of such
services. Given this, Orca has the following dependencies:

1.1. GNOME 2.22 or better

The GNOME 2.22 desktop contains a number of bug fixes and enhancements to the accessibility
infrastructure. These are needed for Orca to run properly. GNOME 2.22 also packages a variety of other
dependencies of Orca, including gnome-speech, gnome-mag, pyatspi, etc.

1.2. Python v2.4 or better

Orca is written in the Python programming language and depends upon features found in Python
versions 2.4 and greater.

1.3. BrITTY v3.7.2 or better

BrITTY [BRLTTY>] provides access to a variety of Braille displays, and consists of a library and a
daemon to provide programmatic interaction with the display.

1.4. Keyboard Navigation

As much as possible, Orca relies upon the keyboard navigation methods built in to the native platform.
For example, it is expected that the native platform will provide access via traditional methods such as
the "tab" key, keyboard mnemonics, and keyboard accelerators.

Chapter 2. Architecture

The Orca architecture has been driven primarily by the Orca User Experience Design. There are two
primary operating modes of Orca: a focus tracking mode and a flat review mode.

The focus tracking mode generally relies upon applications to provide reasonable keyboard navigation
techniques to allow the user to operate the application without requiring the mouse. As the user uses
traditional keyboard navigation techniques to move from component to component in the application
(e.g., pressing the Tab key to move from pushbutton to text area to toggle button, etc.), Orca will present
this to the user via braille, speech, magnification, or a combination thereof. In the cases where more
complex navigation is needed, such as structural navigation of complex text documents, Orca also
provides a facility to define keyboard and braille input events that it can intercept and handle
appropriately.

The flat review mode provides the user with the ability to spatially navigate a window, giving them the
ability to explore as well as discover and interact with components in the window. Orca provides a
default set of keybindings for flat review, and these keybindings can be easily redefined by the user.

The various modes of Orca are handled by "scripts," which are Python modules that can provide a
custom interpretation of an application’s interaction model. It is not intended that there will be a unique
script for every application. Instead, it is expected that there will be a general purpose script that covers a
large number of applications. In the event that more compelling or custom behavior is desired for an
application, however, one can use a custom script for the application. Furthermore, scripts can subclass
other scripts, allowing them to be quite simple.

As illustrated in the high level Orca architecture diagram, the main components of Orca are as follows:
desktop applications that support the AT-SPI, the AT-SPI registry and infrastructure, Orca itself, Orca
Scripts, and system services (e.g., speech, braille, magnification).

Figure 2-1. High Level Orca Architecture. The main components of Orca are as follows: desktop
applications that support the AT-SPI, the AT-SPI registry and infrastructure, Orca itself, Orca
Scripts, and system services. The key communication between the components is depicted.

High Level Orca Architecture

The following sections describe the architecture in more detail.

2.1. Desktop and AT-SPI

Orca’s sole view of any application on the desktop is via the AT-SPI [AT-SPI>]. The AT-SPI is an
IDL/CORBA/Bonobo-based technology [Bonobo>] that provides a common interface for the desktop
and its applications to expose their GUI component hierarchy to assistive technologies such as Orca.

Chapter 2. Architecture

AT-SPI support is provided by toolkits such as GNOME’s GTK+ toolkit (via gail [GAIL>]), the Java
platform (via the Java access bridge), and the custom toolkits used by applications such as Mozilla and
Open Office. Future support includes the Qt toolkit of KDE.

Assistive Technologies interact with the AT-SPI via two primary means: the AT-SPI registry and
accessible objects. The AT-SPI registry permits assistive technologies to discover existing applications
on the desktop and to register for event notification for AT-SPI events (e.g., window creation, focus
changes, object state changes, etc.) and device events (e.g., keyboard input events). Accessible objects
provide the assistive technology with information about the application, and tend to mirror the actual
GUI component hierarchy. Accessible objects can be obtained in three ways:

1. From the AT-SPI registry via queries on the desktop
2. From an AT-SPI event

3. From another Accessible via parent/child relationships and other relationships such as "label for"
and "labeled by".

Orca’s interaction with the AT-SPI is managed through Orca’s atspi.py module. The atspi.py
module communicates directly with the AT-SPI via the AT-SPI IDL interfaces and also provides a
number of classes that help with AT-SPI interaction: Registry, Accessible, and Event. The full
documentation for each of these classes is available in the pydoc for Orca while the following paragraphs
provide a brief overview.

The Registry class provides a singleton class instance to access to the AT-SPI registry. It provides
convenience methods for registering AT-SPI event listeners and device event listeners, and also provides
the mechanism for starting and stopping event delivery from the AT-SPI registry.

The Accessible class provides a wrapper for communicating with CORBA objects that implement the
AT-SPI Accessible and Application interfaces. Using Python’s ability to add new properties to a class
instance at run time, Orca can also annotate Accessible class instances with additional information. The
main purpose of an Accessible is to provide a local cache for accessible objects, preventing the need for
numerous round trip calls to the AT-SPI registry and application for information.

The Event class provides a wrapper for converting AT-SPI events into Python Event instances. The
main purpose is to convert the AT-SPI accessible source of the event into a Python Accessible instance
and to also provide an Event instance that can be annotated by scripts (the actual AT-SPI event delivered
by the registry is read-only).

As illustrated in the high level Orca architecture diagram, the at spi module has been used to register
event and device listeners with the AT-SPI registry. Each exemplary desktop application (Firefox,
NetBeans, GAIM, StarOffice) emits AT-SPI events to the AT-SPI registry which then delivers them to the
atspi module. The at spi module then calls all appropriate listeners for the events it receives from the
AT-SPI registry.

Chapter 2. Architecture

In this case, the orca module receives keyboard events, which it interprets and also sends on to the
focus_tracking_presenter module. Of more interest, however, is that the
focus_tracking_presenter module receives AT-SPI events which it then passes on the script for the
application associated with the event. If there is no script, the focus_tracking_presenter will create
an instance of the default script. See the Orca Script Writing Guide for more information.

The at spi module also registers its own set of event listeners that it uses to keep its local cache of
accessible objects up to date.

IMPLEMENTATION DETAIL: Because processing AT-SPI object events can be time consuming, and
because the notification of AT-SPI object events is relatively "bursty," the
focus_tracking_presenter maintains a queue of AT-SPI object and input device events. It adds the
events to this queue when it receives them and processes the events on the GLib idle handling thread.
This permits Orca to survive a relatively long burst of events and also allows it to handle the events on a
thread that is compatible with GLib.

2.2. Orca Module

The orca module is the "main entry point" of Orca. It initializes the components that Orca uses (atspi,
speech, braille, mag) and loads the user’s settings. It also is the first to receive all keyboard and braille
input events and delves them out to other Orca components appropriately.

The orca module maintains the current known "locus of focus" in the 1ocusOfFocus field of the
orca_state module. The locusOfFocus is intended to represent the current object that the user is
working with. In simple terms, it is the object that is highlighted or has the dotted line drawn around it.
Be advised that the notion of "focus" differs from toolkit to toolkit. For example, the object with toolkit
focus may actually be the parent of the object that is highlighted. The 1ocusOfFocus is an an attempt to
neutralize these differences across toolkits: the locus of focus is the individual object that is highlighted,
has the caret, etc.

Oreca scripts set the locus of focus to inform Orca when the locus of focus has changed. In addition, in
the event that there was a visual appearance change to the object that has the locus of focus, the orca
module provides a visualAppearanceChanged that scripts can use to inform Orca of this event.

NOTE: The orca_state.locusOfFocus field is intended to be set only via the setLocusOfFocus
method of the orca module. Because the set LocusOfFocus method performs bookkeeping and other
tasks, the orca_state.locusOfFocus field should never be set directly.

2.2.1. settings

The settings module (not depicted in the high level Orca architecture diagram) holds preferences set by

Chapter 2. Architecture

the user during configuration. These settings include the following: use of speech and/or braille, voice
styles, key echo, text echo, and command echo.

Any Orca module can check the value of a setting by examining the field directly in the settings
module. In addition, the orca module will import the user—settings module from the ~/.orca
directory, if it exists (it is created as part of the configuration process that is run the first time Orca is
used or when the user presses Insert+Space to invoke the configuration GUI).

The user-settings module is a Python script, allowing it to contain functions, class definitions, etc.
The primary job of the user—settings is to directly set the values of fields in the settings module.

IMPLEMENTATION DETAIL: the init method of the orca module obtains settings. As a result, the
user-settings module is imported very early in the Orca life cycle.

2.3. Orca Scripts

Internally, the orca module keeps track of list of PresentationManager instances (see the pydoc for
presentation_manager.py). The FocusTrackingPresenter (see
focus_tracking_presenter) is of the most interest, as it is the PresentationManager that
manages scripts.

Details on the FocusTrackingPresenter and Orca scripts can be found in the Orca Script Writing
Guide.

2.4. System Services

Oreca relies on existing system services to provide support for speech synthesis, braille, and screen
magnification. To interact with these services, Orca provides the modules described in the following
sections.

2.4.1. speech

The speech module provides Orca’s Python interface to system speech services. Each speech service is
generated by a "speech server factory.” There are currently two such factories: one for [gnome-speech>]
(see gnomespeechfactory.py and one for [Emacspeak>] (see espeechfactory.py), though it is
expected that support for other factories can be added in the future.

Chapter 2. Architecture

Each speech factory offers up a list of SpeechServers, where each Speechserver is typically an
interface to a particular speech engine. For example, the espeechfactory will offer up a
SpeechServer that talks to the Fonix DECtalk engine and a SpeechServer that talks to the IBMTTS
engine. Likewise, the gnomespeechfactory will offer up a Speechserver that uses the
gnome-speech interface to talk to the Festival Speech Synthesis System, a separate SpeechServer
that also uses the gnome—speech interface to talk to the Fonix DECtalk engine, and so on.

Each SpeechServer instance then provides a set of methods for actually speaking. Each of the methods
accepts an ACSS instance, which represents an aural cascading style sheet ([ACSS>]) that defines the
voice and voice parameter settings to use.

As part of the orca-setup process, the user selects a particular speech factory, SpeechServer, and
voice to use as their default voice. When Orca starts, the speech module looks for these settings and
connects to the appropriate speech factory and SpeechServer. In the event the a connection cannot be
made, the speech module attempts to find a working synthesis engine to use by examining its list of
speech factories. The speech module then provides simple methods that delegate to the SpeechServer
instance. This model allows scripts to use their own SpeechServer instances if they wish, but scripts
typically just rely upon the user’s default preferences.

2.4.2. braille

The braille module provides Orca’s Python interface to the system’s BrlTTY [BRLTTY>] daemon. The
BrITTY daemon, in turn, provides the interface to braille devices for both displaying braille and
receiving input from the user.

TODO: flesh this section out more.

2.4.3. mag

The mag module provides Orca’s Python interface to the system’s gnome-mag [gnome-mag>] CORBA
service(s). The magnification component provides methods that permit Orca discover screen
magnification services and set their desktop region of interest.

TODO: flesh this section out more.

Chapter 3. Introduction to Scripting

In this section, you will learn more about the Orca architecture as well as how to create your own custom
scripts for Orca.

The goal of scripting is to provide Orca with the capability of providing a natural feeling and compelling
user experience for the various user interaction models of different desktop applications.

The Orca scripting approach allows scripts to extend and/or override the behavior of other scripts, thus
simplifying the job of a script writer. To further facilitate script writing, Orca provides a "default" script
that provides a reasonable default behavior for Orca. This will not only serve as the "fallback script" for
Orca, but will also typically serve as the "jumping off" point for writing custom scripts. Furthermore,
keep in mind that the "default" script is intended to cover a large variety of applications. As such, you
may find that it is not necessary to write a custom script.

The primary operating mode of Orca is "focus tracking mode," where Orca keeps track of the most
relevant user interface object that has keyboard focus. When Orca detects changes to this object, which
Oreca refers to as the "locus of focus," Orca will present relevant information to the user.

As such, the primary goal of a script is to assist Orca in tracking of the locus of focus as well as
presenting information about the locus of focus. A script does this by registering for one or more AT-SPI
events and then reacting appropriately when it receives those events. A script can also intercept and
interpret keystrokes and braille input events, allowing it to further extend the behavior of Orca.

3.1. Script Contract

The contract for a script is documented in detail in the pydoc of the Script class in the script.py
module. The Script subclass defined in the default .py module provides the default behavior for
Orca when it encounters applications and toolkits that behave like the GTK toolkit. It is expected that
new scripts will typically extend the Script subclass of the default .py module rather than directly
extending the Script class defined in the script .py module.

3.2. Script Life Cycle

BIRTH: Orca’s focus_tracking_presenter module is the sole maintainer of scripts. Whenever it
receives an event from the AT-SPI Registry, the focus_tracking_presenter will determine the
application associated with that event and create a new script for that application if on has not yet been
created. Only one script instance per application instance is allowed by the

focus_tracking_presenter.

Chapter 3. Introduction to Scripting

The script creation process consists of the following steps:

+ The focus_tracking_presenter will attempt to perform a Python import using the application
name as the name of an Orca module. For example, for the gnome-terminal application, the
focus_tracking_presenter will look for the gnome-terminal.py inthe orca.scripts
package (see the script naming discussion in the debug utilities section to determine what to name
your script). If it cannot find such a module in the Python search path, the
focus_tracking_presenter will then check in the orca package for a module matching the name
of the toolkit used by the application. Failing that, Orca will create an instance of the script class
defined in the default . py module.

NOTE: the focus_tracking_presenter also maintains a table to map application names to script
names. This is useful in many cases, such as if the application name changes over time or the
application contains characters that are awkward in file system names. To extend or override this table,
one can call the set ScriptMapping method of the settings module.

IMPLEMENTATION DETAIL: it is possible to tell Orca to bypass all custom script creation by setting
orca.settings.enableCustomScripts=False in your ~/.orca/user-settings.py module.
This can be useful for debugging purposes.

« Each script module is expected to provide a Script class that ultimately extends the orca.Script
class defined in the script . py module. The constructor takes the accessible application object as an
argument.

The constructor for the Script instance is expected to define any keystrokes, braille buttons, and
AT-SPI event listeners it is interested in (see the Customized Behavior section for how to do this).

+ Once it has created a script, the focus_tracking_presenter will register event listeners for all
AT-SPI events associated with script (i.e., the script should not register these events itself). When the
focus_tracking_presenter receives the events, it will pass the event to the script associated with
the event, regardless if the application associated with the script has focus or not.

IMPLEMENTATION DETAIL: the focus_tracking_presenter registers its own
processObjectEvent method as the AT-SPI event listener. This method finds (and creates if
necessary) the script associated with the event and passes the event onto the required
processObjectEvent method of the script for processing. Each Event (see the at spi module) has
the following fields:

+ source: an Accessible (see the at spi module) instance representing the object associated with
the event

+ type: a string describing the event (e.g., window:activated)
« detaill and detail?2: integer details for the event (see the AT-SPI documentation)

« any_data: something associated with the event (see the AT-SPI documentation)

Chapter 3. Introduction to Scripting

+ The focus_tracking_presenter also keeps track of the active script (as determined by the script
associated with the currently active window) and will pass all keyboard and braille input events to the
active script.

IMPLEMENTATION DETAIL: the focus_tracking_presenter implements the
processKeyboardEvent and processBrailleEvent methods which are called by the main orca
module whenever it receives a keystroke or braille input event. The focus_tracking_presenter
will pass these events onto the processKeyboardEvent and processBrailleEvent methods of
the active script.

IMPLEMENTATION DETAIL: Because processing AT-SPI object events can be time consuming, and
because the notification of AT-SPI object events is relatively "bursty," the
focus_tracking_presenter maintains a queue of AT-SPI object and input device events. It adds
the events to this queue when it receives them and processes the events on the GLib idle handling
thread. This permits Orca to survive a relatively long burst of events and also allows it to handle the
events on a thread that is compatible with GLib.

LIFE: Whenever a script receives an event, the script can do whatever it wants. Its primary task, however,
is to assist Orca in keeping track of the locus of focus. When a script detects a change in the locus of
focus, it should call orca.setLocusOfFocus with the Accessible object instance that is the new
locus of focus. Among other things, this results in the orca_state.locusOfFocus field being updated.

NOTE: The orca_state.locusOfFocus field is intended to be set only via the setLocusOfFocus
method of the orca module. Because the set LocusOfFocus method performs bookkeeping and other
tasks, the orca_state.locusOfFocus field should never be set directly.

IMPLEMENTATION DETAIL: The orca module has logic to detect if the locus of focus really changed
and will propagate the change on as appropriate. The orca.set LocusOfFocus method first sends the
change to the locusOfFocusChanged method of the focus_tracking_presenter, which then
passes the change onto the required locusOfFocusChanged method of the active script. The
locusOfFocusChanged method is the primary place where a script will present information to the user.

In many cases, the locus of focus doesn’t change, but some property of the current locus of focus
changes. For example, a checkbox is checked or unchecked, yet remains as the locus of focus. In these
cases, a script should also keep Orca informed by calling orca.visualAppearanceChanged.

IMPLEMENTATION DETAIL: Like the 1ocusOfFocusChanged method, the
visualAppearanceChanged method of the orca module will first call the
visualAppearanceChanged method of the focus_tracking_presenter, which will then call the
required visualAppearanceChanged of the active script. The visualAppearanceChanged is the
primary place where a script will present such information to the user.

Chapter 3. Introduction to Scripting

DEATH: Whenever the focus_tracking_presenter detects that an application has gone away (by
determining that the application has been removed from the desktop), it will delete the script for that
application and unregister any event listeners associated with that script.

IMPLEMENTATION DETAIL: the focus_tracking_presenter determines an application has gone
away by detecting a object :children-changed: remove event on the desktop.

10

Chapter 4. Customized Behavior

NOTE: THIS WILL CHANGE POST V1.0. In particular, the method for setting up event handlers and
keyboard/braille bindings will be changed so as to allow for easier customization of these bindings. As
such, the information in this chapter is here only for historical purposes.

The customized behavior of a script is set up in its constructor. In its constructor, each script is expected
to extend/override several fields as illustrated in the following diagram and describe below:

Figure 4-1. Orca Script Diagram

Orca Script Diagram

+ listeners: adictionary where the keys are strings that match AT-SPI event types (e.g., focus:,
object :text—-caret-moved, etc.), and the values are functions to handle the event. Each function is
passed an Event instance (see the at spi.py module) as its sole parameter and no return value is
expected.

* keybindings: an instance of keybindings.KeyBindings (see the keybindings.py module)
that defines the keystrokes the script is interested in.

+ braillebindings: a dictionary where the keys are BrlTTY commands (e.g., CMD_HWINLT, defined
inbraille.py), and the values are ITnputEventHandler instances.

The constructor for the Script class, which all scripts should ultimately extend (most will extend the
Script subclass of the default .py module, which in turn extends Script class of the script.py
module), sets up empty values for each of these fields. As such, a subclass merely needs to
extend/override these fields. Each of these fields is described in more detail in the following sections.

4.1. Defining Event Listeners

As described above, the 1isteners field is a dictionary where the keys are strings that match AT-SPI
event types (e.g., focus:, object :text-caret-moved, etc.), and the values are functions to handle
the event. A script’s constructor can modify/extend this dictionary by merely defining an entry:

self.listeners["focus:"] = self.onFocus
In the event there is already an entry in the 1isteners dictionary, it will be overridden by the new value.

As described previously, the focus_tracking_presenter will register listeners on behalf of a script,
and will notify the script of any events via the script’s processObjectEvent method. The
processObjectEvent method of the top level Script class examines the type field of the given

11

Chapter 4. Customized Behavior

event, calling any matching functions from the 1isteners dictionary. As such, it is unlikely that a
Script subclass will ever need to override the processObjectEvent method. Instead, it merely needs
to populate the 1isteners dictionary as appropriate.

The function for an event listener merely takes an Event instance (see the atspi . py module) and does
whatever it wants; the return value is ignored. For example, the function definition associated with the
above listeners entry might look like the following, where the event is described above:

def onFocus(self, event):
"""Called whenever an object gets focus.

Arguments:
- event: the Event

wnwn

orca.setLocusOfFocus (event, event.source)

4.2. Input Event Handlers

Before describing how to set up keyboard and braille event handlers, it is import to first understand the
InputEventHandler, which is defined in the input_event .py module. InputEventHandlers
serve a purpose of holding a function to call for a particular input event, and a human consumable string
that provides a short description of the function’s behavior. The main purpose of the
InputEventHandler is to provide support for the "learn mode" of Orca. If learn mode is enabled, the
input event handler will consume the input event (i.e., return True) and merely speak and braille the
human consumable string. If learn mode is not enabled, the input event handler will pass the active script
and the input event on to the function, returning the boolean value of the function as indication of
whether the event should be consumed by Orca or passed on to the application.

The best place to look for examples of InputEventHandlers is in the default . py module. For
example, this module defines an input event handler for telling the flat review context to move to the
home position of a window:

reviewHomeHandler = input_event.InputEventHandler (
Script.reviewHome,
_("Moves flat review to the home position."))

In this definition, default .py is creating an InputEventHandler instance whose function is the
Script’s method, reviewHome and whose human consumable text describes what will happen. The
Script’s reviewHome method is defined as follows:

def reviewHome (self, inputEvent):

"""Moves the flat review context to the top left of the current

window."""

12

Chapter 4. Customized Behavior

context = self.getFlatReviewContext ()
context.goBegin ()

self.reviewCurrentLine (inputEvent)
self.targetCursorCell = braille.cursorCell
return True

Note that the method returns True to indicate the input event has been consumed.

4.3. Defining Keyboard Bindings

The keyboard bindings for a script are held in the keybindings field, which is a KeyBindings
instance. This field maintains a set of KeyBinding instances.

Keyboard bindings merely define the keystroke and modifier circumstances needed to invoke an
InputEventHandler instance. This definition is held in a KeyBinding instance (see the
keybindings.py module):

self.keybindings.add(
keybindings.KeyBinding ("KP_7",
1 << orca.MODIFIER_ORCA,
1 << orca.MODIFIER_ORCA,
reviewHomeHandler))

The first parameter of a KeyBinding is a string that represents an X Window System KeySym string for
the key. This is typically a string from /usr/include/X11/keysymdef .h with the preceding *XK_’
removed (e.g., XK_KP_Enter becomes the string ’KP_Enter’), and is used as a means to express the
physical key associated with the KeySym.

The second parameter is a bit mask that defines which modifiers the keybinding cares about. If it does
not care about any modifier state, then this mask can be set to 0. In the example above, the keybinding is
being told to pay attention to the MODIFIER_ORCA modifier, which is a modifier Orca sets when the
"Insert" key is pressed. Other examples of modifier bit positions include those defined in the AT-SPI
Accessibility specification: MODIFIER_SHIFT, MODIFIER_SHIFTLOCK, MODIFIER_CONTROL,
MODIFIER_ALT, MODIFIER_META, MODIFIER_META2, MODIFIER_META3, and
MODIFIER_NUMLOCK. These can be obtained via the orca.atspi.Accessibility field. For
exanqﬂe,orca.atspi.Accessibility.MODIFIER_SHIFTLOCK.

The third parameter is a bit mask that defines what the modifier settings must be. If a bit is set, it means
the associated modifier must be set. The only meaningful bits in this mask are those that are defined by
the second parameter. In the example above, the keybinding cares about the MODIFIER_ORCA modifier,
and the third parameter says this modifier must be set.

The last parameter is the InputEventHandler to us if the user types a keystroke qualified by the
previous parameters. InputEventHandlers are described in the previous section.

13

Chapter 4. Customized Behavior

4.4. Defining Braille Bindings

Refreshable braille displays have buttons that the user can press. The BrITTY system provides a means
for standardizing the types of input events one can generate using these buttons, and a script can set up
braille bindings to handle these events.

The braille bindings for a script are held in the braillebindings field, which is a dictionary. The keys
for the dictionary are BrITTY constants representing braille input events (see braille.py for a list),
and the values are ITnputEventHandler instances:

self.braillebindings|[braille.CMD_TOP_LEFT] = reviewHomeHandler

In the above example, the BrlTTY braille.CMD_TOP_LEFT input event has been set to be handled by
the same reviewHomeHandler instance described previously.

14

Chapter 5. Script Utilities

There are many common things a script wants to do: generate speech, update braille, etc. In addition,
there are many common things a script writer wants to do, especially getting debug output to determine
just what the AT-SPI is sending it. This chapter discusses the debug utilities of Orca as well as a variety
of utilities to assist a script in managing speech, braille, and magnification.

5.1. Debug Utilities

The debug utilities (defined in the debug. py module) of Orca provide a means for selectively turning on
information to be sent to the console where Orca is running. This information is quite useful in
determining what is happening inside Orca as well as what the AT-SPI is sending to Orca.

Let’s begin the discussion of the debug utilities with the top question on any script writer’s mind: "What
do I name my script?" As you may recall, the name of a script is based upon the name of the application
as given to us by the AT-SPI. One of the easy ways to determine this is to listen for window:activate
events that will be issued when an application is started. These events can then be used to determine the
name of the application.

Fortunately, the focus_tracking_presenter already registers for window:activate events, so all
you need to do is tell Orca to print these events out when it receives them. The method for doing this
involves telling the debug utilities what to do, and this can be done by modifying your

~/.orca/user-settings.py.

There are two main settings to tell Orca to print out events: an event filter and an event debug level. The
event filter is a regular expression that is used to match AT-SPI event types, and the event debug level
specifies a threshold for when to actually print information to the console (for more complete detail on
these settings, refer to debug.py). These settings can be modified by adding the following lines to your

~/.orca/user—-settings.py:

orca.debug.setEventDebugFilter (re.compile (' window:activate’))
orca.debug.setEventDebugLevel (debug.LEVEL_OFF)

Now, when you rerun Orca, it will output information whenever it receives a window:activate event
from the AT-SPI registry. For example, if you run Star Office, you should see output similar to the
following:

OBJECT EVENT: window:activate detail=(0,0)
app='StarOffice’ name=’StarOffice’ role=’frame’
state="ENABLED FOCUSABLE RESIZABLE SENSITIVE SHOWING VISIBLE’

15

Chapter 5. Script Utilities

The string app="StarOffice’ indicates the name of the application is ’StarOffice.” As such, if you
wanted to write a custom script, you would call it StarOffice.py.

NOTE: you can also get other information while Orca is running by pressing the debug keystrokes:

» Insert+F5: dump a list of all applications to the console
« Insert+F6: speak/braille information about the active script and application with focus
« Insert+F7: dump the ancestors of the object with focus to the console

+ Insert+F8: dump the entire widget hierarchy of the application with focus to the console

The debug module also includes a number of other methods, each of which is described in more detail in
debug.py. Note that each method includes a debug level threshold. The debug. py module has a
description of various level settings and what to expect for output.

+ setDebugLevel (newLevel): sets the debug level threshold, turning on or off the various debug
code built in to the various Orca modules. This is typically called from

~/.orca/user—-settings.py.

+ setEventDebugLevel (newLevel): described above; typically called from

~/.orca/user—-settings.py.

+ setEventDebugFilter (regExpression): described above; typically called from

~/.orca/user—-settings.py.
+ printException (level):if an exception is caught, this can be used to print out detail about it

+ printStack (level): prints the current stack; useful for determining when and why a code path is
being executed

+ println(level, text): prints the given text; useful for general debug output
+ printObjectEvent (level, event): prints out the given AT-SPI event

+ printObjectEvent (level, event): prints out the given AT-SPI event, using the event debug
level as an additional threshold; this is already used by the focus_tracking_presenter, S0 you are
unlikely to need it

« printInputEvent (level, string): prints out the given AT-SPI event, using the event debug
level as an additional threshold; this is already used by orca.py (for keyboard events) and
braille.py (for braille events), so you are unlikely to need it

NOTE: One debug level of interest is debug . LEVEL_FINE. This level will tell you when a script is
activated, and can be useful to determine if Orca is actually finding your script! For example, when the
script for the gnome—terminal is activated by the focus_tracking_presenter, you will see the
following output:

ACTIVE SCRIPT: gnome-terminal (module=orca.scripts.gnome-terminal)

Notice that the class of the script instance is included. If you determine that this class is not what you
expect when you are developing your custom script, then something went wrong when trying to find or

16

Chapter 5. Script Utilities

load your custom script. This can often happen because Python performs a lot of late binding and
compilation, thus errors are often not encountered until a specific code path is executed at run time. You
can tell the focus_tracking_presenter to give you more information about any possible failures or
exceptions it handles in this area by setting the debug level to debug.LEVEL_FINEST.

5.2. Speech Synthesis

Orca provides two main modules for speech output: speech.py and speechgenerator.py. The
speech.py module provides the main interface to the speech synthesis subsystem. The
speechgenerator.py module provides a SpeechGenerator class that can be used to to actually
generate the text to be spoken for various objects. The expected use of the two modules is as follows: a
script will create its own instance of a SpeechGenerator and will use it to generate text. The script will
then pass this text to the speech.py module to be spoken.

5.2.1. speech.py

For the purposes of script writing, the main entry points of the speech.py module are speak,
speakUtterances, and stop

See the speech.py module for more information.

5.2.2. speechgenerator.py

The primary goal of a SpeechGenerator is to create text to be spoken for an accessible object. There
are two public entry points into a SpeechGenerator:

+ getSpeech(obj, already_focused): returns a list of strings to be spoken for the given
accessible object. The already_focused boolean parameter provides a hint to the speech generator
about how much text to generate. For example, if a check box that already has focus is to be spoken,
usually the reason for this is that the state changed between checked and unchecked. As a result, an
appropriate thing to do in this situation is to only speak the new change in state (e.g., "checked").

+ getSpeechContext (obj, stopAncestor):returns a list of strings to be spoken that describe the
visual context of the given accessible object. This is loosely represented by the hierarchical
relationship of the object (i.e., the "Quit" button in the "File" menu in the ...), and the amount of
information can be contained by specifying an accessible st opAncestor above which we do not
want to know anything about. The primary use of this method is to provide the user with feedback
regarding the relevant visual context information that changed when the locus of focus changes, but
this method is also useful for assisting in "where am " queries.

NOTE: Orca currently provides some level of support for verbosity via the VERBOSITY_LEVEL fields of
the settings.py module. There are currently two verbosity levels: VERBOSITY_LEVEL_BRIEF and

17

Chapter 5. Script Utilities

VERBOSITY_LEVEL_VERBOSE. A SpeechGenerator subclass is expected to examine the
speechVerbosityLevel property of the settings.py module and provide the appropriate level of
text:

if settings.speechVerbosityLevel == settings.VERBOSITY_ LEVEL_VERBOSE:
utterances.append (rolenames.getSpeechForRoleName (ob7j))

5.3. Braille Output

Like speech, Orca provides two main modules for braille: braille.py and braillegenerator.py.
The braille.py module provides the main interface to the braille display. The
braillegenerator.py module provides a BrailleGenerator class that can be used to to actually
generate the text to be displayed for various objects. The expected use of the two modules is as follows: a
script will create its own instance of a BrailleGenerator and will use it to braille regions. The script
will then pass these braille regions to the braille.py module to be displayed.

5.3.1. braille.py

TODO: [[[WDW - much writing to be done here, especially regarding how regions will provide
automatic support for cursor routing keys.]]]

5.3.2. braillegenerator.py

The primary goal of a BrailleGenerator is to create text to be displayed for an accessible object.
There are two public entry points into a BrailleGenerator:

* getBrailleRegions (obj, groupChildren=True):returns a list of two items: the first is an
ordered list of braille Region instances that represent text to be displayed on the braille display,
left-to-right on one line; and the second is an element from the first list that represents which Region
has "focus" and should be represented by the braille cursor on the display.

TODO: [[[WDW - describe grouping of children.]]]

+ getBrailleContext (obj): returns an ordered list (i.e., an array) of braille Region instances that
describe the visual context of the given accessible object. This is loosely represented by the
hierarchical relationship of the object (i.e., the "Quit" button in the "File" menu in the ...).

Typically, a script will "build up" a single logical line of text for the braille display. The beginning of this
line will be the result of the call to getBrailleContext and the remainder of the line will be the result

18

Chapter 5. Script Utilities

of one or more calls to getBrailleRegions. Since the logical line will typically be longer than the
number of cells on the braille display, the braille.py module will scroll to show the braille Region
with focus. Furthermore, the braille.py will also respond to BrITTY input events to allow the user to
use braille display input buttons for scrolling to review the entire line.

NOTE: Orca currently provides some level of support for verbosity via the VERBOSITY_LEVEL fields of
the settings.py module. There are currently two verbosity levels: VERBOSITY_LEVEL_BRIEF and
VERBOSITY_LEVEL_VERBOSE. A BrailleGenerator subclass is expected to examine the
brailleVerbosityLevel property of the settings.py module and provide the appropriate level of
text:

if settings.brailleVerbosityLevel == settings.VERBOSITY_ LEVEL_VERBOSE:
regions.append (braille.Region (

" + rolenames.getBrailleForRoleName (obj)))

19

Chapter 6. Internationalization (I18N) Support

All human-consumable text obtained from AT-SPI calls is expected to be in a localized form. As such,
Orca does not do any extra localization processing when working with text obtained via the AT-SPI.

For text generated by Orca itself, Orca handles internationalization and localization using the [gettext>]
support of Python. The gettext support of Python is similar to the GNU gettext module. Each human
consumable string of Orca is US English text wrapped in a call to gettext.gettext. The call to
gettext.gettext will either return a localized string or default to the US English text. Orca depends upon
an active and thriving community of open source translators to provide the localizations.

The synthesis of localized speech is to be provided by the underlying gnome-speech engine. That is,
Orca merely passes localized text to the speech engine, which is responsible for the correct interpretation
and pronunciation.

The generation of localized braille is to be determined. 7TODO: BrITTY currently does not support this at
the moment, but it is expected that the BrITTY developers will add this in the future.

20

[AT-SPI] Bill Haneman, Marc Mulcahy, and Michael Meeks, AT-SPI
(http://directory.fsf.org/accessibility/at-spi.html) .
[ACSS] T.V. Raman, Aural Style Sheets (http://www.w3.0rg/TR/1998/REC-CSS2-19980512/aural.html) .

[Bonobo] George Lebl, Gnomenclature: Intro to bonobo
(http://lidn.sourceforge.net/articles/gnomenclatureintrotobonobo/) .

[BRLTTY] Dave Meilke, Nicolas Pitre, and Stephane Doyon, BRLTTY
(http://directory.fsf.org/accessibility/britty. html) .

[Emacspeak] T.V. Raman, Emacspeak (http://femacspeak.sourceforge.net/) .

[GAIL] Bill Haneman, GAIL (http://freshmeat.net/projects/gail/) .

[gettext] TODO: Unknown, gettext (http://docs.python.org/lib/module-gettext.html) .
[gnome-mag] Bill Haneman, gnome-mag (http://directory.fsf.org/accessibility/gnome-mag.html) .

[gnome-speech] Marc Mulcahy and Michael Meeks, gnome-speech
(http://directory.fsf.org/accessibility/gnome-speech.html) .

[Gnopernicus] Remus Draica, Gnopernicus (http://directory.fsf.org/accessibility/gnopernicus.html) .
[JAWS] Freedom Scientific, JAWS (http://www.freedomscientific.com/fsproducts/softwarejaws.asp) .

[XKB] Erik Fortune, William Walker, Donna Converse, and George Sachs, The XKB keyboard extension
(http://matrix.netsoc.tcd.ie/hcksplat/work/XKBlib.pdf) .

21

